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A B S T R A C T  

G. BoNe proved that the transformation ~ of the real line, defined by q~ (x)= 
x -  1/x ,  preserves Lebesgue measure. A general method is applied to proving 
that q0 is erg~dic. Same farther applications of the method are also indicated. 

I. Introduction 

It was over a hundred years ago that G. Boole ]-2: 780] discovered the sur- 

prising formula 

oo 

which is valid for any integrable function f.  In the ensuing years at least one 

author generalized and extended (1), (see [3], I-4]) and used it to derive various 

definite integrals. An ergodic-theorist, upon encountering (1) will immediately 

recognize that what is being expressed is the fact that the transformation 

x -* x - ( l /x) preserves the usual Lebesgue measure on the real line R. Now as 

is well known there are fundamental differences between the measure preserving 

transformations of finite measure spaces and those of infinite measure-spaces. 

In particular the latter theory suffers from a paucity of good examples, and so 

a natural question arose - -  what can ergodic theory say about Boole's transfor- 

mation q~(x) = x - (l/x). We embark upon such a study in this paper which is 

devoted in the main to showing q~ is ergodic. 

The method of proof that will be used has wider applicability. In particular 

it can be used to show that q0 is totally ergodic, i.e., q~k is ergodic for all k > 1. 
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It also applies to certain transformations of • that do not preserve Lebesgue 

measure, by first constructing for them an invariant measure and then proving 

ergodicity. It also applies to the study of the questions raised in [1"]. For instance 

Example 2 of [1] is an isomorphic image of Boole's transformation under the 

change of variable x ~ a r g ( ( x -  i)/(x + i)). The mixing properties of go are 

probably not exhausted by the statement that go is totally ergodic, and the proof 

to be given here suggests that more is true. We hope to return to some of these 

points in the future. 

A brief word about the organization of the paper: Section 2 contains some 

general information about measure-preserving transformations of infinite measure 

spaces. Section 3 contains the main theorem, namely that go is ergodic, along 

with several lemmas necessary for its proof. 

Finally we wish to acknowledge an astute observation by Professor L. Flatto 

which somewhat simplified our original version of this work. He pointed out 

how to replace asymptotic analysis of the sequences {Xn} and (u,} by the integral 

test in Lemma 3.2. 

2. Induced transformations 

Let (X,B,#) be a sigma-finite measure space. Let go be a measure-preserving 

transformation of X onto X which is not necessarily invertible; that is go-a(E) e B 

and #(go-aE) = p(E) for every E ~ B. Let A be a measurable subset of X such 

that 
co 

(1) x = U go-"A. 
11=1  

For each x ~ X  we define a positive integer z(x) by z(x) - inf{n I n > 1, go"xeA}. 
The sets {x I z(x) = n}, n = 1, 2,.. . ,  form a disjoint partition of X and satisfy 

(2) {xl,(x) = n + I} = go-t{x[z(x) = n} Ngo-*A c 

for n = 1, 2, . . . .  Let us define the following subsets of go-"A: 

An- {xlz(x) = n}NA and B.- {xlx(x) = n}~A ~, 

For these sets we have 

(3) go-*B, = B,+, u A , + ,  (disjoint), 

n = 1,2, . . . .  
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n = 1,2, . . . .  It is helpful to form a mental image of the mapping in terms of  a 

two-story building t (see Fig. 1). 

f -"  

I 
J 

Fig. 1 

The transformation q~,4 mapping A onto A defined by q~Ax -- q~ '(~)x for x e A 

is called the induced transformation by ~o on A. It is easy to see that 

(4) tp,~ tE = ~.J A, n cp-"E (disjoint) 
n : l  

for E c A, E eB. 

THEOREM 1. I f  #(A) < oO then ~Pa preserves the measure/Z on Ba, the measur- 

able subsets of A. 

PROOF. Using (3) and the fact that ~p is/z-measure preserving we can show by 

induction 

(5) #(E) = ~ #(A k N q~-kE) + #(B,, ~ r 
k = l  

for E c A, E e B, and n = 1, 2, . . . .  By the same method 

(6) #(B,) = ~, #(Ak) 
k : n + l  

n = 1 ,2 , . . . .  From (4) and (5) we have 

co 

(7) • /Z(Akn~p-kE)+#(Bn~q ~-"E) 
k = n + l  

for all n. From (6) the right-hand side of (7) is dominated by 2 Ek~+I/Z(Ak). 

This quantity is the tail of  a convergent series because #(A) < oo ; hence it con- 

verges to zero as n ~ ~ forcing #(E) = p(tp,~ 1E) for E c A, E ~ B. 

t In the case of iavertible transformations the usual picture is somewhat different [5: 29]. 
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THEOaEM 2. I f  q~a is ergodic then so is ~o. 

PROOF. Let E be an invariant measurable set of positive measure. Invariant 

here means r tE = E. At least one of the sets A n E and A n E c has positive 

measure. Since the roles of E and E c are interchangeable in this argument let us 

assume/z(A n E) > 0. From (4) 

= 0 Ann -"AnE 

= 0 A n n E = E A A .  
n = l  

Since q~ ~ is ergodic, we then have E C~ A = A modulo a set of  measure zero. 

Thus X = U~=I ~o-n(E h A )  = U ~ = l E  C~q~-nA = E modulo a set of  measure 

z e r o ,  

REMhRK. The converse of  Theorem 2 is also true. 

l~OOF. Let q~ be ergodic and E a q~A-invariant subset of  A of positive measure. 

Thus (p~-~E= U n ~ A n n ~ p - ' E = E .  Let F = E u U ~ I B ~ f 3 ~ p - ' E ;  con- 

sequently q~- XF = ~0- ~E t.) U,,~ t q~- ~B, n q-hE.  From (3) and the fact that 

q)-lE = (Ax t_)B~)nq)-lE we can conclude q~-~F = F. Thus F = X modulo 
o~ a set of  measure zero. Since U~=~ B, n ~p-nE c A c we have E ___ A modulo a set 

of  measure zero. 

3. Boole's transformation 

Let us now turn our attention to the transformation q ~ : x ~ x -  (1/x) which 

maps ~ - {0} onto ~2 in a two-to-one manner. 

To form the space X on which r acts in accordance with Section 2 we must 

delete from ~ the denumerable set U~=o q~-n{0} which consists of all orbits that 

hit 0, a point where ~0 is undefined. We shall adopt the notation ]El for the 

Lebesgue measure of  a measurable subset E of ~. 

THEOREM. (0 preserves Lebesgue measure. 

PROOF. We shall reproduce a version of  a proof  which is to be found in an 

editor 's  note at the end of [3] (the editor was Cayley). We must show that 

= I zl for arbitrary intervals I. It suMces to verify this for intervals of  

the form I = (0, ~/), r />  0 and I = (7, 0), n < 0. For r />  0 (see Fig. 2) we have 

(1) ~p- 1(0, r/) = ( - 1, 41) u (1,42) (disjoint) 
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GRAPH OF 

l 

Fig. 2 

where ~1 and ~2 are the negative and positive roots of 

1 
r/ = x - - - - ,  

x 

ioe,) 

(2) x 2 - r / x - 1  = 0 .  

Since r/equals the sum of the roots of (2) we have from (I) 

= r  + r  = 

_-I<0,,) I 
The case ~1 < 0 is handled similarly. 

MAIN THEOREM. r is ergodic. 

The plan of the proof is to reduce the problem to the more familiar subject of 

ergodic theory on finite measure spaces. Therefore we intend to demonstrate 

that for the set A = ( - 1, 1) r~ X which has finite measure the induced trans- 

formation ~o~ is ergodic. Then Theorem 2 can be invoked to conclude the main 

theorem. In order to establish the ergoclicity of ~0 A we shall seek a property like 

condition (c) of  R6nyi [6], that is a uniform bound for a certain ratio of maximum 

to minimum derivative of ~p~. 
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This property bounds the departure from linearity of the higher iterates of  

~PA over small intervals where tr is one-to-one. If q~.~ were linear over these 

intervals the aforementioned ratio would always be equal to one and ergodicity 

would be easy to prove. However it is interesting to note that here is an example 

where even the theorem of [1] is useless and a more delicate analysis must be 

made. 

First the formula for the derivative. 

(3) ~p'(x) = 1 + OIx 2) 

is important. Next we require finer details to Fig. 1 for the specific case of Boole's 

transformation. 

GRAPHOF~ AND ~A 

- ; ~  
I 

/ i  rlJl A§ [ I 
/ !  ~1~ L I 

~ / IE I I  - ,' 1' 

-~--; ~1 l[J,___::, ~ ~-"~"~'/-,, t 'i,, I/i-""-'~ " " 

Fig. 3 
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For  this we utilize the sequence x,, n = 1, 2, . . .  of  strictly positive real numbers  

which are defined as follows. For  n = 1,2, . . .  let x ,+ l  be chosen as the positive 

root  o f  

X 2 - -  XnX - -  1 = 0 

with the initial condit ion xx = 1. Note  that 

(4) x,  = ~p(x,+,) 

= x . + l  - ( 1 / x . + l )  

for n = 1, 2, . . . .  Since c#'(x) > 0, the sequence x,, n = 1, 2, ... is strictly increasing; 

and since cp has no fixed points among  the finite real numbers,  l im,_.oox,= oo. 

F r o m  the fact that r is an odd function 

( 5 )  - x .  = q~( - x . + D ,  

n = 1,2, . . .;  and it is easy to see that 

(6) ( - x , ,x , )  n X  = ~o-l+"A. 

Consequently condi t ion (2A.1) is satisfied and q~a can be defined (see Fig. 3 for 

the graph of  q~a). The condit ions o f  Theorem 1 are also satisfied which implies 

that  ~o,t preserves Lebesgue measure. 

We need to define another  sequence u,, n = 1 ,2 , . . .  where ul  = xx = 1 and 

u,+ 1 is taken to be the positive root  of  the equation 

x 2 + x , x  - 1 = 0 

for n = 1,2, .-. .  Note  that 

( 7 )  - - x .  = c # ( u . + t )  = u . +  t - - -  

n = 1 ,2 , . . . .  It follows that 

n = 1, 2, ..., and 

hence 

( 8 )  

Un+ 1 ' 

u , - ( 1 / u , ) + x , - ( l / x , )  = 0 

tin + Xn 
un + Xn = _ _  ; 

UnXn 

u n x  n = 1. 

Consequently lim._.oo u. = O. In addit ion we have 
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(9) l im Xn+t = lim Un+t = 1. 
n---~ oo X n  n---~ co ~'~n 

Fig.  3 depicts  the needed add i t iona l  in fo rmat ion  to Fig.  1. F o r  instance it 

can be seen that  

A n  = [ (  -- U., -- Un+~) W(Un+,,Un)] C~X 

Bn = [( - x.+~, - Xn) u (xn ,  x .+ l ) ]  c ~ x  

n = 1, 2, . . . .  F u r t h e r m o r e  i f  we define the fo l lowing sets 

A+~ =- ( u n + ~ , u ~ ) n X  

n = 1 ,2 , . . .  and  

A ;  - ( - u n , - u n + l )  n X  

B + = (Xn, X n+l )  m X  

B ~  = ( - x n+ t ,  - xn)  N X 

A + = (0,1) ~ X  

A -  = ( - 1 , 0 ) ~ X ,  

we then have tha t  ~0 is a one- to-one  m a p p i n g  o f  these sets onto  others  accord ing  

to the manner  l is ted be low:  

A++t ~ n ~  

A. '+I -~ B + 

B++I--* B + 

B;§ ~ - .  B ;  

n = 1 .2 , . . . ,  and  

A;" ---~ A -  

A r  " A + 

B + ~ A  + 

B;" ~ A - .  

Since cpA [A,  ~ = ~0 n, the t r ans format ion  cp a is a one- to-one mapp ing  o f  A,  + onto  

A -  and A n  onto  A +. 

Next  let ~ denote  the pa r t i t i on  o f  A into  the sets A~ + and A ~ ,  n = 1 ,2 , . . . .  
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Let ~t t") denote the common refinement g V ~0~ a ~ V "'" V cPa-n+tcc The elements 

of  ~t,) are of the form I ,  t'~CPA*I 2 ('~... F)~0~ ("+I) I ,  where I t , . . . , I ,  6cc It is 

also convenient to define gto) as the partition of A into sets A + and A- .  Let us 

denote a generic element of gt,) by I t") for n = 0, 1 ,2 , . . . .  Sometimes the super- 

script will be omitted for n = 1. We have that cpx maps an I t") one-to-one onto 

an I t"-*), n = 1,2, ... and t p ~ l l  t~ = ~,tI  (~ = A - I t~ 

In addition we can write I t") = I t*) n e p a l i  t"-*). The closure I t") of  an I t"~ is 

a little interval whose size is governed by the following considerations. The mean 

value theorem yields 

= ( < ( x ) ) - '  l 

for some x e I m .  As indicated above the I t") is a subset of  some I t*) equal to one 

of  the sets ,4 + of Am for an m > 1. By the chain rule 

= = . . . . .  

From (3) we have that tp'(x) => 1 for x e R - {0} and tp'(x) > 2 for x e A; hence 

tpa(x) > 2 so that we get 

(10) [I(")[ _-< (I/2)I t"-*). 
Applying this inequality succcssivcly wc have 

(11) I I(")l =< 2-n. 

Actually we shall need a similar estimate for the ratio where 

I r = I t*) n tp,~I C"-*), but this is best done later. At any rate from (11) follows 

the fact that = is  a generator (one-sided); i.e.. the smallest a-field containing 

~ , ~  x ~t,) is the ~-ficld IB, of measurable subsets of A. 

LEMMA 1. There  exists  a constant  C'  such that  f o r  al l  n > 1 

c '  

whenever x,  y ~ I ,  1 = `4+ or `4: and n < m. 

PROOF. Due to symmetry it suffices to prove (12) merely for 1 = `4=" in which 

case Fig. 4 applies. 

The following string of equalities and inequalities are consequences of the 

mean value theorem, the chain rule, and (3). 
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f 
_ _  

/ 
Fig. 4 

F o r  some s, t, ~ r and  u, v E A ~ ,  

]q~'x - w'r] q~(n-.,(s) 

~o'(s). ~o'(cps)... ~o'(~o"-=s) (p'(u) 
q, ' ( t )  . ,p '(q,t)  . . .  q , ' (q ,"-  ~t) ,p ' (v)  

q~'(Xm- 1)" q~'(X,,-2) "'" ~'(X,._~+ ~) 
< 

~o'(xm) �9 ~p'(xm- t )""  ~ ' (x. , - .+2) 

(pt(Xm_n+ l) ~'( -- llm+ ,) ] X -- y] 
~D ' ( Xm) q) ' ( --  U,,,) 111 

< 2 "  
(1 + u7.2+ , ) .  J x - Y] 

(1 + u-~)  III 

I 
I 
I 

Flm. n 

I 
I 
1 

I 
L 

I 
I 
I 

,1[  

+ + 

B m.p Bm.l 

,p ' (u)  I x - Y l 

I x - y [  

Izl 
'p'( - urn+ ~) 

q)'~( - -  Urn) Itl 
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The desired 

~Pl 2(1+"7"~" 1) 1 
C ' =  s ( l + u , 7 ,  2) ' 

which is guaranteed to be finite by (9). 

LEMMA 2. There  exis t  a cons tant  C" such that  f o r  al l  I 

(13) q,h(x) ~ 1 + c" Ix - Y l  

~p~(y) - Iii 
whenever  x ,  y e I .  

PROOF. Again we prove (13) merely for I = A ; ,  the case I = A + being 

entirely symmetrical. For x, y e An- and 1 < j < n -  1 we have by the mean 

value theorem that there exists z e tp~A~ = B+_/such that 

Thus 

r = q~,(tply) + r162 - epJy). 

q~'(tPlx) = 1 + q r  (q~Jx - tpiy) 
tp'(q~Jy) tp'(tpJy 

by Lemma 1 

hence 

Ir l 
< 1 + 2 Iq"x-q'JYl' 

=< 1 + C "  I B : - , I .  l x - Y l  

Iz31 Ill 

(14) q~'(tPlx----~ ) < l +C'.(x'-J+l-x"-J ). I x - Y [  
q~'(tp'y) - x a n - j  ]I] 

for x, y e I = A~ and 1 =< j =< n - 1. 

Next by the mean value theorem again there exists x e [ = A~ such that 

tp'(x) < 1 + [~p"(z)] i x _ y l  q,'(y) = ~,(y) 

2 III I -yl = 1 + ~  Iz l (1 +(1/y2)) 
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2(,.-u.+,) . I x - y l  
__<1+ 

.n~+l(1 +(l/u~.)) is I 
2u.u:+, . l ~ - y l  = 1 +  

u. 3+ i(1 + x~) I sl 
Thus 

r Ix-y l  (15) - -  ___ 1 + O(1) 
tp'(y) - Isl 

for x, y ~ I. 

Finally applying the chain rule we have 

(16) ~:,(x) ~o"'(x) = 4o'(~o"-1x)... ~o'(~ox) . ~o'(x) 
@~, (y) q3"'(y) q~,(tpn- ay).., tO '(tpy) tp'(y) 

Israel J. Math., 

From (14) and (15) 

.'( + ,"  ,i)( (17) ~0:,(x) < 1-1 1 c ' ( X ' + ~  - 
q,,;(y) = : ,  ~ .  Isl 1 + 0(I) 

which by (9) 

| ( - . . )  I~ 17(I)( r l  t 1 + o(1) (sin+' _ 7 ; -  (l + o(1) - - - - - -  

m = l  X m + l  

Ix-y{)  
Ii I �9 

Applying the integral test, .[~x-3dx< o% we have that the infinite series 
oo - 3  ~ .  = ix,.+ x (xm+ x - x.,) converges. 

Relation (13) then follows from the following elementary exercise. 

PROPOSITION. If {a.} is a sequence of  nonneoative numbers such that 

Z.~=i a. < oo then 

r i  (1 + xa,) = 1 + O(x) 

f o r O ~ x ~ l .  

PROOF. 

r5 ~ l + x Z  a. =< ( l + x a ~ = < e  x a. 
n ~ l  n ~ [  n = l  

( =< l + x  an+  x 2 ! + . . - .  
n = l  a 

=< l + x e x p  a. f o r 0  < x < l .  
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We now define the important quantities for the study of the present type of 

transformation. 

DEFINITION. Let 

~o?,'(x) 
M.( I  (")) - sup 

x y �9 t(?i) r 

and 

for n = 1,2, . - . .  

M.  - sup M?I(1 (")) 
l(?i) �9 o~(?I) 

LEMMA 3. 

then 

I f  E ~ l (0) , [E l > 0  and 1 (") = r ~~ 

(18) 1/M.(I (?I)) < ]I(?I~ nqa-a?iE] = < M?I(I(")). 
II'"'IIEI 

PROOF. Since tpa is a differentiable map of lt?i~ onto /to) we can apply the 

mean value theorem to obtain 

l~;t'"~l ., = ~o~ (x) 
II~?i)l 

for some x E I C?I). Thus 

?i, 1~7,1<?i' I ?l t 

(19) min ~0 a (x) < < max ~0 a (x). 

j . -3  ]/c.~] ~o i~?i_ 3 

Again applying the mean value theorem we have 

,, IEI ,, 
(20) min q~a (x) < < max q~a (x) 

x o ? v  - - i i , ? i , ~X? i~ !  = o ,?i-~ 

for any interval E c I (~ We get (20) for arbitrary subsets E of I (~ of positive 

measure by applying a standard approximation argument in measure theory.  

Dividing (19) by (20) and recalling that 1~Td~?i' I = 1 we obtain (18). 

LEMMA 4. There exists a constant C > 0 such that i f  Y ") = I C1) then 

(21) II'?i'1 < c(1/2)'-'1I'-1'1 for  all n > 1. 
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PROOF. The reader might be tempted to apply (12) successively to get (21) 

but he would end up with the wrong I (t). The correct I (t) appears in the expression 

(22) I (") = I (1) C3 r ~I ("- l). 

We can apply Lemma 3 restricted to the case n = 1. We take E to be the set 

ir - 1) that appears in (22) and we get 

It1, n~ ; l r . - .  I 
i , , , i  . i i ~ - . l  <= M l ( r ' )  <- M," 

Thus 

From Lemma 2 

[ ltn) ] ~ I(n-1) MI < 2-.+1 Mx " 

I i , 1 , [  - 

M 1 < ( l + C " ) < o o ;  

and we can take C - 1 + C". 

There exist a constant M > 0 such that 

M.<=M < oo 

LEMMA 5. 

(23) 

for all n ~ 1. 

l~ooF. 
,p)"+'"(x) 

M"+l(I("+l)) = sup(.+1) ~p~+l) 

From the chain rule 

,p;,(x) 
< M"(I'")) x.ysuPt"+l)~ l ~P~(Y) 

where I (") = r ("+1). Thus by Lemma 2 

M.+I(I("+~)) < M. sup(.+t)(1 + C  " I x -  

where I '~+ 1) c I. Thus 
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for I ("+ 1) c I ;  and consequently by Lemma 4 

for all I ("+x). 

Therefore 

< M.(1 + C ' C " ' 2 - " )  

M.+ 1 < M.(I  + C . C " ' 2 - " )  

277 

and by Lemma 2 

= M~ f i  (1 + CC"2-"), 
711=2 

=< ( I + C " )  f i  ( I + C . C " . 2 - m ) .  
m = 2  

Since the infinite product converges, we have 

M . < = M  = (1 +C")  
oo 

I-[ 0 + c .  c " . 2 - ' ) <  
m = 2  

At last let us consider the tail field n .~ x q~" Ba- For an element E ~ n . ~  1 ~o~" B a 

there exists a set E . ~ B a  for each n such that E = q~7~"E.. The invariant sets of  

~oa are tail sets. So are A + and A- ;  however neither of these are invariant 

(q3~lA + = A-  and q~a-tA- = A+). Once we have proved that A + and A-  are 

the only nontrivial tail sets the proof of the main theorem is concluded. 

LFMMA 6. I f  E is a non-trivial tail set then E equals either A + or A -  up to 

a set of measure zero. 

PROOF. Let E be a tail set such that ]E n l C ~  0. It suffices to prove 

[E n I  '~ = [ I '~  For each n there exists E2 .~ Ba  such that E n I  `~ 

= 9~2"(E2, C~I~~ From Lemmas 3 and 5, though we only need the left-hand 

inequality of (18), 

(24) li,2.,I �9 [e nro, l/m = le  h i (  ~ 

t'or I (2~) c I c~ Using the fact that ~ is a generator a standard approximation 

argument in measure theory allows us to replace the intervals 1 (2") in (24) by 

arbitrary subsets of I (~ in particular by E c N I ~~ Therefore [ E c n I (~ ] = 0. 
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